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LETTER TO THE EDITOR 

A multicomponent water wave equation 

B A Kupershmidt 
The University of Tennessee Space Institute, Tullahoma, Tennessee 37388, USA 

Received 14 August 1985 

Abstract. A vector extension of the classical dispersive water wave equation is shown to 
be a nember of an infinite integrable three-Hamiltonian hierarchy. 

The approach of the category theory is to treat every individual object as a member 
of a class of related objects. An equally fruitful idea is to consider a given object as 
a sub- or factor object of a larger system possessing some of the basic properties of 
the original entity. Besides being an efficient way towards possible generalisations, 
this procedure allows one to assemble experimental information about systems which 
could be considered to be similar. 

In the theory of integrable systems this approach has been sporadically used for 
the nonlinear Schrodinger equation (Gibbons 1981) and for the Korteweg-de Vries 
equation (Hirota and Satsuma 1981, Wilson 1982, Ito 1982), by extending a scalar 
system into a multicomponent one. In this letter I show that the classical dispersive 
water wave (DWW) equation (Broer 1975, Kaup 1975) allows a non-trivial vector 
extension which preserves three-Hamiltonian structures of the original system (Kuper- 
shmidt 1985a). 

Consider the following system 

U = (2  h + u2 - U,) h = (2uh + hx + q'q/2)x 4=(uq)x  (1) 

for functions U, h, and q = (q, ,  . . . , q N ) '  of x and C. The time t in (1) is minus twice 
the fluid dynamical time. For q = 0 (1) becomes the DWW equation. Denote a = a/ax 
( ) ( k ) = a k (  ), and let 

H o = h  H ,  = uh + qrq/2 H2 = u2h + h2+ uh'"+ uq'q/2 (2) 

be the first three conservation laws (CL) of the system (1). Then the system (1) can 
be cast into the following bi-Hamiltonian form 

(3) (U, h, t j f ) '=  B ' ( S H 2 )  = B 2 ( S H , )  

where SH = ( S H / 6 u ,  S H / S h ,  SH/Si j ' ) '  is the vector of variational derivatives of H, 
and the matrices B' and B2 in (3) produce the following motion equations 

U = a( S H / S h )  h =a(aH/au)  t j = a ( S H / S i j )  ( B ' )  (4a)  
U = 2a( G H / S u )  +a(  U -a) / (  S H / S h )  6 = ( u + a ) a ( m / G h )  

+ ( h a  + ah)(  S H / S h )  + qfa(  S H /  S i j )  4 = a(qSH/ S H )  (87. 
(4b) 
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We see from ( 4 a )  that the matrix B' is skewsymmetric constant coefficient; thus, B' 
is Hamiltonian (Manin 1979, ch I). The matrix B2 has the following Lie algebraic 
interpretation (see Kupershmidt 1985b, ch VIII, $ 5 ) :  let K be a commutative algebra 
with a derivation a: K + K (e.g. K = C"(R'), a = d/dx);  let D( K )  be K considered 
as a Lie algebra with the commutator 

[ X ,  Y ] = X Y " ' - X ' " Y  X ,  Y E  K .  (5) 
Let 9 = D ( K )  K K N + l  be the semidirect product Lie algebra with the commutator 

[ ( f ;  X ;  r ' ) ' ,  (8; ~ ; p ' ) ' ] ' =  ( X g ( ' ) -  ~f("; X Y ' " - X " ' Y ;  ( x p " ' -  ~ r t ' ) ) ' )  

X ,  Y E  D ( K ) , f ; g E  K ,  r , p e  K N .  (6) 

Let w and v be the following bilinear skewsymmetric forms on 9: 

w [ ( f ;  x ;  f r y ,  ( g ;  Y ;  p ' ) ' ]  = 2fg(')  

v [ ( f ;  X ;  r ' ) ' ,  ( g ;  Y ;  p ' ) ' ]  = - fYcz )+Xg '2 '  

It is easy to check that w and U are generalised two-cocycles on 9. The matrix B2 in 
( 4 b )  is the natural Hamiltonian matrix associated with the two-cocycle w + v on 9. 

Let us see that the bi-Hamiltonian definition 

B 1 ( 6 H n + , )  = B2(6H,,) ( 9 )  
can be iterated for all n. It will imply that we have the whole hierarchy ( 9 )  of 
bi-Hamiltonian systems. Denote F,, = 6H,, = (a , ,  b,, C L ) ' .  Writing ( 9 )  in a longer form, 
we obtain 

b!,'il = (2a ,  + ub,, - b!,'))") 
a"' ,,+, - - ua',"+ ai2'+ h"'b, +2hb',)+ q'c'," 

(10c )  c ( l )  - 

b,+, = 2a, + ub, - B Y )  

n + l -  (qbn)") 

so that we indeed can find b,,+l and c , + ~  as 

cn + 1 = qbn. ( 1 1 )  

To show that the RHS of ( l o b )  belongs to Ima, notice that the chain of relations 

F L  B2( F,, ) - - FL B2( F, ) = - FL B I (  F, + 1) - F L  + 1 B ' ( F,, ) = F L  + I B2( F,, - 1 ) (12 )  

implies 

F ;  B2( F, ) - 0 (13) 

where a - b means ( a  - b )  E Ima. In particular, taking m = 0 in (13 )  and using ( 2 ) ,  we 
get 

ua!,"+ a:' + h'"b, + 2hb',"+ q'c(,') = ( 6Ho)'B2( 6H,) - 0 
so that we indeed can find an+,  from ( l o b ) .  It remains to show that, for each n, the 
vector obtained F,, = (a,,, b,,, ck)' is the vector of variational derivatives of some function 
H,. This fact is equivalent to the Frkchet derivative D(F,,) being symmetric (Manin 
1979, ch I, Kupershmidt 1980, ch 11): D(F,,)' = D(F,,). Applying the Frtchet derivative 
operator D to (10 )  and denoting D(F,) by D,, we find that 

BID,, ,  = €I'D,, + G, (14n) 
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We show that D, is symmetric by induction on n, the cases n = 0, 1 , 2  being evidently 
satisfied. Consider the expression 0 = (14n)B' - (14n - 1)B2, written as 

B ' D , + , B ~ = ( B ~ D , B ' + B ~ D , B ~ ) - B ~ D , - , B ~ + ~ ,  (16) 

(17) d, := G,B' - G,-,B2. 

Since Dnil is symmetric when B'D,+IB' is, then to make the induction step we need 
to show, as can be seen from (16), that c,, is symmetric, and the latter fact can be 
checked by a straightforward calculation with the use of the following identities: 

{ c Y 3 q  - q'c(')a} is symmetric (18) 

{a"'a(u -a) - (ua"'+ a'2')J} is symmetric (19) 

{(b'"+ab)(ha+ah) -(2hb"'+ h("b)d} is symmetric (20) 

[abd(u - a ) ] ' =  ( b " ' + a b ) ( ~ + a ) a - [ ( u b ) " ' - b ' ~ ' ] a  (21) 

(abq"")' = b'l'qd- (qb)"'a. (22) 

In conclusion, let us see that our bi-Hamiltonian hierarchy (9) is, in fact, a 
three-Hamiltonian hierarchy 

B ' ( ~ H , + , )  = B ~ ( ~ H , )  = B ~ ( ~ H , - ~ )  n 2 O  (23) 

with H-I = u/2.  
RHS of (10). Therefore, we can use (11) to iterate (10): 

b"' n i l  - -2(ua("  n - 1  + a ~ ! , + h " ' b n - ' + 2 h b ' , ' l , + q ' c ' , ' ~ , ) + ~ ( u - ~ ) ( b , ~ , )  

For this, notice than a, enters only through its derivative U: ' )  in the 

= 2(ud+ ~ u ) ( u , - , )  + [2(hd+dh) +a(  U -a)']( bn- ' )  + 2q'd(~ , - , )  
a'" - 

n t l  - (U + a ) [ ( u  +a)a(an-i)+(ha+ah)(bn-i)  +q'a(c,-i)l 

+ (ha + d h ) [ 2 ~ , - ,  + ( U  - a) (  bn- l ) ]  + q'dq( b,-,) 

= [2(ha + a h )  + (U +a) 'a](  U , - * )  + [( U + a ) ( h a + a h )  + (ha + ah)(  U - a )  

+ q'dqI(bn-l)+ ( ~ + a ) q ' a ( c n - , )  
- - d q ( 2 ~ , - ,  + ub, - l -  bv!l) = 2 a q ( ~ , - I ) + d q ( ~  -d)(b,-I). 

Thus, we see that our matrix B3 produces the following motion equations: 

li = 2(ua+au) (6H/6u)  + [2( ha+ah) +a(  U - d ) ' ] ( 6 H / 6 h )  + 2qfd(6H/6q) 

li = [2( ha+ah) + (U +a)2d](6H/6u) +[(U + a ) ( h a + a h )  + (ha+ah)(  U - a )  
+ q 'aq ] (  6 H /  Sh)  + ( U  + a)q'a( S H /  6q) 

c j = 2 a q ( 6 H / 6 ~ ) + d q ( ~  - a ) ( s H / 6 h )  

and (23) is obviously satisfied also for n = 0. It remains to show that B3 is a Hamiltonian 
matrix. The easiest way to do this would be to use a q-extended Miura map for the 
DW equation from § 3 in Kupershmidt (1985a). However, I was not able to find such 
a map. The direct check of the Hamiltonian property of the matrix B3 would be too 
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painful to contemplate. An acceptable way out is this: using the fact that B3 is 
Hamiltonian in the absence of q, as was proven in 0 3 in Kupershmidt (1985a), one 
has to pay attention only to the new terms due to the presence of q. In this way the 
computation is tolerably tedious. The matrix B3 is indeed Hamiltonian. 

This work was partially supported by the National Science Foundation. 
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